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CHAPTER 1. INTRODUCTION

1.1 BACKGROUND

The base layer in a rigid pavement system plays an important role in the short- and long-term
performance of the pavement. The functions of the base layer include providing a stable
construction platform, providing uniform support for Portland cement concrete (PCC) pavement
slabs, preventing pumping and joint faulting, providing subsurface drainage in the case of
drainable bases (referred to herein as permeable bases), and reducing detrimental frost effects.

Various types of base layers are recommended for use on airfield pavements by the Federal
Aviation Administration (FAA) Advisory Circular (AC) for Pavement Design (FAA Advisory
Circular [AC] 150/5320-6D). These include unbound granular, chemically stabilized (cement
and asphalt), pozzolanic, and mechanically stabilized materials. The focus of this research study,
however, was limited to the following base materials:

Stabilized Layers

e Cement-treated base (CTB) (Item P-304).

e Econocrete base or lean concrete base (LCB) (Item P-306).
e Asphalt-treated base (ATB) (Item P-401).

Permeable Layers

e Unbound permeable base (UPB).

e Cement-treated permeable base (CTPB).
e Asphalt-treated permeable base (ATPB).

FAA AC 150/5320-6D requires that stabilized base layers be provided beneath all PCC
pavements that are designed for aircraft gross loads of 100,000 Ib (45,250 kg) or greater. Most
civil airport pavement construction work in the U.S. is performed in accordance with FAA AC
150/5370-10A, Standards for Specifying Construction of Airports. The Circular provides
guidance on cement-treated, econocrete, and asphalt-treated base layers, referred to as Items 304,
306, and 401, respectively. However, in the case of permeable layers, the Circular provides little
guidance even though permeable layers are used in civilian airfields on a routine basis.

1.2 RESEARCH OBJECTIVES
The research study looked at two main objectives:

e Identify criteria being used by pavement engineers to design and specify the qualities and
characteristics of stabilized and/or permeable bases consistent with satisfactory pavement
performance.

e Present the criteria as a design and construction procedure, published in the form of a
practical guide, for the use of stabilized and permeable materials as a base for rigid
pavements. This guide will document practices and acquaint the pavement engineer and



the builder with criteria that will balance pavement thickness, strength, and other design
and construction aspects when using stabilized or permeable bases.

To summarize the scope of work for this project, it is to (a) examine the state-of-the-practice
regarding the design and construction of stabilized and permeable bases, (b) identify the design
and construction practices that lead to satisfactory pavement performance and prepare guide
specifications, (c) verify the effectiveness of the recommended specifications by constructing
actual test pavement sections, and (d) develop final project documentation and instructional
materials (i.e., Design and Construction Guide, Advisory Circulars) for use by airfield pavement
designers and builders.

The term “performance” in this study refers specifically to the short-term performance of the
rigid pavement system, as defined by the time frame in which a newly constructed (non-
warranted) pavement is still under the control of the Contractor. While this period may vary, it is
generally in the order of 3 months. The short-term performance attribute of interest is the
occurrence (or non-occurrence) of early-age or premature slab cracking, brought on too
frequently by inadequate design and/or construction of the stabilized and/or permeable base
layer.

1.3 DEFINITIONS OF KEY TERMS

The meanings of key terms in this report are included. Many of the terms were borrowed from
the Best Practices for Airport Portland Cement Concrete Pavement Construction (Rigid Airport
Pavement) report (Kohn et al., 2003) and from other FAA, Department of Defense (DOD), and
Federal and State highway agency publications, as necessary.

1.3.1 Concrete Pavement

The term concrete pavement in this report refers to jointed concrete pavements and, more
specifically, short-jointed plain concrete (JPC) pavements specified and constructed in
accordance with Item P-501 of the FAA Advisory Circular AC-5370-10. In instances where
short-jointed reinforced (JRC) pavements are being discussed, they will be explicitly mentioned.

1.3.2 Base and Subbase Layer

Base and subbase are often used interchangeably in concrete pavement literature to mean the
layer immediately below the PCC layer. In this report, the layer immediately below the slab is
referred to as the base layer. The layer or layers between the base and the subgrade are referred
to as subbase.

1.3.3 Cement-Treated Base (CTB) Course

CTB is a high-quality base course prepared from mineral aggregate and cement uniformly
blended and mixed with water and specified and constructed in accordance with Item P-304 of
FAA AC-5370-10. CTB materials are nominally designed for a 7-day compressive strength of
750 1b/in® (5,170 kPa).



1.3.4 Econocrete or Lean Concrete Base (LCB) Course

Econocrete or LCB consists of aggregate and cement uniformly blended together and mixed with
water and specified and constructed in accordance with Item P-306 of FAA AC-5370-10. The
term econocrete is used because the materials used are of marginal quality as compared to PCC.
These mixtures typically contain 2 to 3 bags of cement per cubic yard of material and are
specified to have a minimum 7-day compressive strength of 750 1b/in® (5,170 kPa) and
maximum 28-day compressive strength of 1,200 Ib/in” (8,275 kPa).

1.3.5 Asphalt-Treated Base (ATB) Course

An ATB consists of aggregate and bituminous materials mixed at a central mixing plant. This
layer is currently specified and constructed in accordance with Item P-403 that is currently
published under FAA AC 150/5370/10B.

1.3.6 Permeable Base Course

A permeable base is an open-graded drainage layer with a typical laboratory permeability value
of 1,000 ft/day (305 m/day) or greater. The primary function of this layer is to dissipate water
infiltrating the pavement surface by moving it laterally towards the edge of the pavement within
an acceptable timeframe. Currently there are no FAA specifications that directly deal with these
layers.

Permeable bases can be asphalt-treated (ATPB), cement-treated (CTPB), or unbound (UPB),
depending on construction and structural requirements. An ATPB typically has approximately 2
to 3 percent asphalt binder mixed with crushed, durable, open-graded aggregates. A CTPB
typically contains 2 to 3 bags of portland cement per cubic yard and also uses crushed, durable,
open-graded aggregates.



CHAPTER 2. LITERATURE REVIEW

2.1 OVERVIEW

The specific material types of interest in this study were CTB, econocrete, ATB, UPB, ATPB,
and CTPB. In order to fully understand the impact of the base layer on the early-age
performance of rigid airfield pavements, a review was made of existing literature addressing the
design, construction, and specifications of stabilized and permeable layers beneath airfield PCC
pavements. The review focused the experiences of the various agencies or researchers with the
base types of interest in this study.

The literature review encompassed the following sources of information:

e The Federal Aviation Administration (FAA) and the Department of Defense (DOD)
publications (including those from the U.S. Army Corps of Engineers [USACE], Air
Force, and Navy), Portland Cement Association (PCA), American Concrete Pavement
Association (ACPA), and State highway agencies.

e Searches of internet-based library systems (e.g., the University of Illinois, U.S. Army
Corps of Engineers, the Transportation Research Information Service [TRIS], National
Technical Information Service [NTIS], and Compendex databases).

e Previous research of the Innovative Pavement Research Foundation (IPRF) and FAA.

e Published proceedings of the American Society of Civil Engineers (ASCE), the
Transportation Research Board (TRB), the Federal Highway Administration (FHWA),
the International Society for Concrete Pavements (ISCP), and other agencies.

A detailed summary of the findings from the literature review is presented in this chapter. It was
obvious at the outset of the literature search that base type is only one of the factors affecting
early-age performance of airfield PCC pavements. Therefore, the summary was expanded to
include this and other relevant factors.

2.2 ROLE OF STABILIZED AND PERMEABLE BASE LAYERS IN AIRFIELD
PAVEMENT DESIGN

There is a broad consensus among airfield pavement engineers that a uniform and durable base is
essential for ensuring the long-term performance of a rigid pavement. The main functions of the
base layer are as follows:

Provide a stable construction platform.

Provide a uniform, long-term support for the pavement while in service.

Distribute applied loads to the underlying layers including the pavement subgrade.
Aid in providing subsurface drainage due to infiltration of precipitation or ingress of
frost-melt or spring-thaw bleed water (in the case of permeable bases).

e Provide frost protection (where required).



The prominence and importance of the base layer increases corresponding to the importance of
the structure being designed. For example, to ensure that the key structural design requirements
are satisfied, the FAA requires the use of stabilized bases (ATB, CTB, econocrete) for all new
rigid airfield pavements that will be required to support aircraft weighing 100,000 lbs (45,250
kg) or greater (FAA, 1995). The various departments of the military (Army, Air Force, Navy,
Marine Corps) also allow the use of stabilized layers in pavement structural design (UFC, 2001).

2.2.1 Incorporation of Stabilized and Permeable Layers into Design

Stiff base layers, such as CTB and econocrete, add to the flexural stiffness of rigid pavement
structures and help transmit loads across discontinuities (joints and cracks) in the pavement
slabs. Therefore, they enhance the load-carrying capacity of concrete pavements. The structural
benefit imparted to a pavement section by a stabilized base is reflected in the FAA design
procedure in the modulus of subgrade reaction (k) assigned to the foundation. The k-value of the
foundation is adjusted upward based on the thickness of the stabilized base—the higher the base
thickness, the higher the k-value and consequently, the lower the required thickness of the
overlying rigid pavement. However, an upper limit of 500 1b/in*/in (136 kPa/mm) is placed on
the k-value because values greater than this are usually not reliable due to the difficulty in
reading deflections.

The procedures of the Army and the Air Force use the modulus of elasticity of the base as a
means to incorporate the effect of the stabilized base on structural thickness design. The latter
procedures also allow for structural benefits to be drawn from drainage layers if used under PCC
slabs.

The FAA rigid airfield design procedure is based on mechanistic-empirical (M-E) considerations
of load-induced flexural fatigue, as well as the procedures of the Army, Air Force, and Navy. It
is noteworthy that none of the procedures directly consider the effects of temperature and
moisture (curling and warping) on pavement thickness design. These effects are considered
indirectly through field calibration of the theoretical fatigue model, application of a design
“safety factor,” and the guidance provided on joint spacing, slab length to width ratios, and
jointing.

2.3 EARLY-AGE DISTRESS OBSERVATIONS IN RIGID AIRFIELD PAVEMENTS

The problem of early-age or premature cracking, as defined in this research, seems to have
caught the attention of the industry in recent times. This is perhaps partly due to the increased
number of incidences of this problem in the recent past (ACPA, 2002a), increased awareness of
the problem, and the increased intolerance towards it from contractors, designers, program
managers, and owners—the principal stakeholders involved with airfield construction and
operations.

It was difficult to find many documented cases of premature failures through a review of
published literature. Perhaps one of the reasons for this is that early-age cracking, in most cases,
occurs while a construction project is still under contractor control and the affected slabs are
dealt with in the most expedient manner possible at the time (typically, removal and



replacement). The priorities during construction do not afford adequate time for a detailed
forensic investigation. Nonetheless, there is adequate anecdotal/empirical evidence and a wealth
of theoretical information that establishes a consensus that when certain design, materials,
construction, and climatic factors align themselves in a particular fashion, early-age distresses
can occur. Therefore, it becomes necessary to devise ways to effectively mitigate this problem.

Early-age cracking, on any given project, can take any of the following forms (Kohn et al.,
2003):

e Plastic shrinkage cracking (series of shallow cracks with a specific orientation).

e Random cracking (random orientation).

e Longitudinal cracking (cracking parallel to the centerline of the feature being
investigated).

e Transverse cracking (cracking perpendicular to the centerline of the feature being
investigated).

e Corner cracking (cracking located at the PCC slab corner intersecting the longitudinal
and transverse joints).

e Pop-off cracks (cracking that happens just ahead of the sawing operation).

e Later stage cracking (early-age slab bottom cracking propagating to the surface).

e Sympathy cracks (cracking that occurs in adjacent slabs when joints between the slabs in
questions are not aligned during new construction).

e Settlement cracks over dowel or tie bars.

e Re-entrant cracks.

In general, the amount of premature cracking that may result on any given project is anywhere
from 1 to 5 percent of the total project (more frequently in the 1 to 2 percent range).
Furthermore, very rarely does it continue to occur year-after-year on a multi-phased project. In
fact, even within the same project, it may or may not appear on all paving days. This would
indicate that a confluence of exacerbating factors needs to be present for the cracking to occur.
The key is to study those factors that are considered to contribute to the highest risk of early-age
cracking and deal with them as practically as possible during specification, design, and
construction.

Kohn et al. (2003) developed the decision tree shown in table 1 to identify the most probable
cause(s) of the types of cracking discussed above. This table is largely based on experience and
empirical observation. Based on this table and other similar literature, the following factors can
be considered as the major causes of premature cracking:

e High strength or thick stabilized bases.

e Degree of restraint between PCC slabs and base.

e PCC slab jointing (panel size dimensions and sawing operations).

e Texture of the base.

e Concrete mixture design in the PCC slab.

e Weather and ambient conditions prevalent during the construction of the PCC slab.



The following subsections describe the impact of each of these factors individually. Their
combined effect and the types of cracking they can produce are presented in table 1. It should be
noted, however, that one factor may dominate the early-age performance for a given situation.

2.3.1 Impact of Base Thickness and Strength

A major contributor to this factor in recent times is believed to be the presence of very thick or
very stiff subbases. The cause appears to be associated with the wrongly held notion that
“thicker and stronger means better,” which does not necessarily hold true for concrete pavements
(ACPA, 2002a). It is easy to see why this axiom has come into being in the first place by
examining the specification-related aspects and some of the issues surrounding the construction
of stabilized bases.

As an example, the current FAA design procedure does not account for temperature and moisture
stresses in a direct manner in PCC slab thickness design. As a result, increasing the thickness of
the base layers always results in an increase in the slab support value (k-value) and therefore a
resulting decrease in PCC slab thickness; this is particularly true for stabilized bases, such as
CTB and econocrete. However, if temperature and moisture curling/warping stresses are taken
into account in thickness design, an increase in k-value could increase slab stresses and therefore
may require a more substantial design to overcome them.

Similarly, CTB layers are designed for a minimum 7-day compressive strength of 750 Ib/in’
(5,170 kPa). This strength requirement was established because at this strength level, the long-
term durability of the CTB layer when subject to repeated cycles of wetting and drying or
freezing and thawing is virtually assured, as shown in figure 1 (PCA, 1992). As can be seen in
this figure, the 750 Ib/in” (5,170 kPa) value corresponds to approximately 99 percent of the
specimens passing the rigorous ASTM D 559 and D 560 freeze-thaw and wet-dry testing.

There is a lot of debate over whether a typical stabilized base layer located under a thick airfield
concrete pavement undergoes the number of freeze-thaw and wet-dry cycles this test represents
or if the impact of this is certainly true of CTB and econocrete layers, which continue to gain
strength over time due to continued hydration of the PCC. While durability is a long-term goal
in design to avoid pumping and faulting problems under PCC pavement, there is certainly a need
to balance durability requirements specified using strength as a basis with their impact on early-
age performance.



Table 1. Decision tree to identify causes for early-age cracking (Kohn et al., 2003).

Cracks Just Late Cracking
Random Settlement
. . - - Transverse Ahead of (after about Sympathy
Cracking Plastic Cracking Longitudinal . - Corner - Cracks over | Re-entrant
. . g - Cracking (partial - Sawing 7 days to about 60 Cracks
Type Shrinkage (No orientation) Cracking ; Cracking . Dowel or Cracks
or full width) (Pop-off days or before aircraft -
. Tie Bars
Cracks) loading)
Possible  |High rate of Slab to base Late sawing for Late sawing for Early loading Late sawing for |Early-age slab bottom |Joints in Higher slump |Use of odd-
Causes Evaporation bonding prevailing prevailing conditions prevailing cracking finally paved lane Concrete shaped slab
- Warm temp. conditions conditions becoming visible do not panels
- Low humidity match joints
- Windy in adjacent
lanes
Dry concrete mix |Concrete slab Shallow sawing of [Shallow sawing of  |Excessive Sawing against |Frost heave Different Shallow Rigid
friction against longitudinal transverse curling and high wind joint dowel bars or |penetrations
rough base or contraction joint in |contraction warping due to cracking tie bars (in-place
concrete relation to actual  |joints in relation to  |temperature patterns in structures)
penetration slab thickness actual slab thickness |changes or adjacent
into open-graded moisture loss lanes
base
Dry aggregates  |Reflection Slabs too wide in  [Slabs too long in Dowel bars too Foundation settlement |Joints match |Delay in
cracking relation to thickness|relation to thickness |close to each in location setting time
(from base & & width other at but not in
cracking) length transverse and type
longitudinal
joints
Late or Temperature drop |Temperature drop Late or
inadequate curing [due to sudden due to sudden cold inadequate
cold front or rain |front or rain curing
Delay in finishing | Late sawing Misaligned or Misaligned or Misaligned or
for bonded bonded dowels in bonded dowels
prevailing dowels in adjacent |adjacent in adjacent
conditions longitudinal joints |transverse joints transverse joints
preventing cracked |preventing cracked |preventing

joints to function

joints to function

cracked joints to
function




Table 1. Decision tree to identify causes for early-age cracking (Kohn et al., 2003) (continued).

Cracks Just Late Cracking
Random Settlement
. . - - Transverse Ahead of (after about Sympathy
Cracking Plastic Cracking Longitudinal . - Corner - Cracks over | Re-entrant
< ] ’ - Cracking (partial - Sawing 7 days to about 60 Cracks
Type Shrinkage (No orientation) Cracking ; Cracking Dowel or Cracks
or full width) (Pop-off days or before -
: . Tie Bars
Cracks) aircraft loading)
Temperature drop |Shallow sawing of |Excessive curling/ |Excessive
due to sudden Contraction joints |warping curling/warping
cold front or rain |in relation to
actual slab
thickness
Material Poor aggregate Poor aggregate Retarded concrete
incompatibility gradation (sand  |gradation
leading to higher |too fine; gap (sand too fine; gap
concrete gradation) gradation)
shrinkage and
delay in setting
Possible ~ |time
Causes Poor aggregate Early loading

gradation (sand
too fine; gap
gradation)

Infill lane restraints |Poor aggregate

gradation (sand too
fine; gap gradation)

Late or inadequate |High-shrinkage

curing concrete

High-shrinkage Early loading

concrete

Slab to base

bonding
Check quality of |Obtain cores Obtain core to Obtain core to check |Obtain core to Check dowel
curing compound |through base to  |check depth of depth of cracking & |check depth of depths using a

— check slab to base |cracking & aggregate breakage |cracking & covermeter or
Investigative
: Bond aggregate breakage aggregate GPR or by
Techniques .
breakage coring

Check quality of |Check quality of |Check quality of  |Check quality of

curing compound

curing compound

curing compound

curing compound
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Figure 1. Relationship between strength and durability for CTB (PCA, 1992)

If mixtures designed at higher-strength levels are achieved, steps to avoid random cracking in the
base must be taken, since the cracks can reflect into the PCC surface layer. However, this is
seldom practiced because the material is accepted based on a minimum density requirement,
which sometimes results in very high-strength bases. Furthermore, on some jobs, there is an
eagerness on the part of contractors to achieve strengths much greater than the minimum
specified to expedite construction. High strength bases increase the slab support value (k),
leading to higher curling stresses in the slab. These higher curling stresses have a more
damaging impact when the concrete is relatively young. CTB layers with greater than 4 to 5
percent cement also tend to develop shrinkage cracks (Grogan et al., 1999) which can then
reflect into PCC slabs.

Arguments similar to those discussed for CTB can also be made for thickness or stiffness of
econocrete layers. When combined with thickness, the magnitude of the effect of increased slab

support on curling stresses multiplies.

In some cases, the higher base stiffness does not result from a misapplication of the specification.
It could simply be due to construction sequencing or the prevalent environmental conditions.

Where the stiffness or strength of the CTB or econocrete base cannot be controlled, it is
recommended that joints be made in the base to prevent uncontrolled cracking. In Europe
(particularly in Germany), this practice has been used successfully over the past two decades
(FHWA, 1992). The current FAA P-306 specification allows this as an option to the Contractor.
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Case Studies
Herman (1991)

In summarizing his experience with premature cracking related to high-strength bases, Herman
stated that the when using cement-stabilized bases under rigid airfield pavement, adequate
attention should be paid to control the strength of the material. Among two projects mentioned
by Herman was a 10,500-ft (3,202-m) long by 200-ft (61-m) wide runway section, presumably
built in the early 1990s. The slab dimensions were 20 ft by 20 ft (6.1 m by 6.1 m). The slab
foundation consisted of a 6-in (152-mm) thick CTB on top of a non-cohesive sand subgrade.
The longitudinal joint system included doweled, keyed and tied joints, whereas the transverse
joint system was comprised of only aggregate interlocking, except at the runway ends were
dowels were placed.

Herman reported an interesting experience with CTB construction. During a significant delay
between the construction of slab and base, the compressive strength of the base increased to
2,000 Ib/in (13,790 kPa), whereas the design value was only 750 Ib/in® (5,170 kPA) at 7 days.
A few unplanned transverse cracks developed, even though an asphalt bond breaker was placed
between the slab and base. Almost all of the cracks occurred on the thinnest pavement sections.

The base material in the cracked areas was more similar to concrete than CTB. The base
material was mixed in the concrete mixer at the central plant, after the Contractor discontinued
the use of the pug mill. Herman attributed the contraction cracks to the location of the
construction joints in the CTB. He suggested that the CTB joints be located exactly under the
joints of the concrete slabs. Another recommendation was to place the slab shortly after the
placement of the base. If a significant period (e.g., more than 90 days) occurs between the
placement of the slab and base, the base should be sawcut to avoid reflection cracks.

This particular case study pointed out the necessity to either control the strength of the base or to
sawcut joints in the base to coincide with joints in the slabs.

Grogan et al. (1999)

Grogan et al. performed a study to investigate the in-service performance of pavements that
contain stabilized bases. This study included field surveys and non-destructive testing performed
on pavement sections at the following locations:

Atlanta International Airport (ATL) in Atlanta, Georgia.

Dallas/Fort Worth International Airport (DFW) in Dallas, Texas.

John F. Kennedy International Airport (JFK) in New York City, New York.
Sky Harbor International Airport (PHX) in Phoenix, Arizona.

Stapleton International Airport (DEN) in Denver, Colorado.

The evaluation was done several years into the design lives of the selected sections and therefore
does not strictly conform to the scope of this report. However, the following observations from
the Grogan study are of direct relevance to this report:
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The strength and stiffness of the CTBs at the airports studied were very high. This makes
it very difficult to differentiate the stabilized layer, in terms of modulus values, when
conducting a non-destructive evaluation based on data collected with a falling weight
deflectometer (FWD) or heavy weight deflectometer (HWD) device. The high
strength/stiffness values also indicate that the PCC layers may have been behaving more
as a bonded overlay on the stabilized layer rather than a PCC layer resting on a separate
stabilized layer.

From the reconstruction at DFW and maintenance work at other airfields, it appears that
current methods of constructing a bond breaker (i.e., application of asphalt emulsion
without regard to the time of application) to prevent a bond from forming between the
PCC and the underlying stabilized layer, do not perform adequately. In general, the
stabilized layer is bonded to the PCC and a slippage plane or horizontal crack develops
below the PCC-stabilized layer interface.

The crack pattern observed in all of the CTBs followed the crack/joint pattern in the
overlying PCC layer. Other cracking, which could have been shrinkage cracking that
formed at the time of construction, was present in some of the CTBs.

In general, the results of the condition survey data from DFW did not indicate a
difference in the PCC surface condition in areas where the CTB was in poorer condition.

2.3.2 Impact of Degree of Restraint

Like most materials, the nature of concrete is that expansion and contraction occur as a function
of the applied “through-thickness” temperature or moisture variations. The degree of movement
and the associated tensile stresses developed as a result of these changes are directly governed by
the applied temperature and moisture variation, thermal and mechanical properties of concrete,
self-weight of the concrete, and the restraint provided at the slab-base interface.

Concrete slabs crack when tensile stresses within the concrete exceed the concrete’s tensile
strength (ACPA, 2002b). Joints are provided in concrete pavements to relieve excessive stress
build-up and to prevent random cracking. However, uncontrolled cracks can still occur in
“green” concrete due to stresses driven by volumetric shrinkage and temperature particularly
when poor materials, long joint spacing, inadequate or mistimed sawcutting, stiff bases, and
rough slab-base interfaces are involved. Rough slab-base interfaces promote a higher degree of
friction, which causes excessive axial restraint to volumetric shrinkage and to thermal expansion
and contraction.

Types of Friction

Many research projects have been conducted to understand the cracking mechanism of concrete
slabs under frictional forces (Goldbeck, 1924; Timms, 1964; Wimsatt and McCullough, 1989).
The majority of slab-base friction research has focused on friction developed at the slab-base
interface due to horizontal movement from the uniform variation of temperature (i.e., expansion
and contraction); this type of friction is termed sliding friction (Rufino, 2003). As horizontal
forces developed by either drying shrinkage or temperature differential pull the slab in one
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direction, frictional resistance forces are developed in the opposite direction. This type of
friction has been researched the most with regard to early-age cracking problems.

More recently, researchers have explored another type of slab-foundation friction (Yu et al.,
1998; Tarr et al., 1999). This friction develops when the wheel load applied to the slab forces
contact between the slab and the base. This new friction concept is referred to as contact friction.
The contact friction problem depends on the location and magnitude of the load, the base type,
and whether there is initial contact between the slab and the base. It is widely known that
temperature curling affects the contact condition between the slab and base. The contact
condition at the slab-base interface before and after loading is of extreme importance for
understanding how contact friction develops and the factors affecting it.

Interest in contact friction was generated when analysis of data from the fully instrumented
Denver International Airport pavements indicated that the loaded pavement behaved unbonded at
times and bonded at other times, even in the presence of a bond breaker between the slab and
base layer (Rufino, 2003). Therefore, it is possible to have a bonding action without physical
vertical bond or adhesion. By extension, it can be deduced that any forcing function (e.g.
thermal and moisture stresses) imparted to the slab when the concrete is still relatively young and
untrafficked, can cause apparent adhesion, which can impact the frictional restraint.

Due to the complex interaction of shrinkage-, creep-, and temperature-induced mechanisms that
can cause a slab to deform during early age, it may be that the true characterization of the impact
of friction on the stresses developed at the slab-base interface must account for both sliding and
contact friction.

Sliding Friction Characterization

According to loannides and Marua (1988), Goldbeck (1924) performed the first sliding tests—
based on Coloumb’s law of friction—to evaluate frictional resistance of bases. They also state
that the first theoretical analysis of friction effects on concrete pavements was proposed by
Bradbury (1938), and later modified by Kelley (1939). According to Rufino (2003), many other
studies have addressed sliding friction, including those by Teller and Sutherland (1935), Friberg
(1954), Timms (1964), PCA (1971), and Wimsatt and McCullough (1989).

Wimsatt and McCullough’s study (1989) resulted in a standardized test to measure friction called
the “push off” test. During the testing, the effect of base type and bond-breaking media (e.g.,
asphalt emulsion, polyethylene sheeting, etc.) on the frictional resistance offered was measured.
In most cases, where a CTB layer was used in the experiment, it stood out as the layer that
offered the highest levels of friction resistance.

Although not a subject of experimental investigation, there is growing evidence in the industry
that excessive frictional restraint can also develop in concrete pavements placed over ATPB and
CTPB, albeit through a slightly different mechanism. According to Voigt (2002), concrete,
while plastic and under the extrusion pressure of the slipform paver, will penetrate the open-
textured permeable base layer. This penetration can be as much as 1 to 2 in (25 to 51 mm) by
some estimates (ACPA, 2002b) and causes restraint to slab movements during thermal and
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moisture driven contraction and expansion. However, the degree of restraint provided is directly
proportional to the gradation of the permeable base and the how easily it can accommodate the
axial movements.

Case studies supporting this hypothesis showing that CTB, lean concrete base (LCB), and
permeable bases provide restraint that, if left unchecked, can lead to uncontrolled cracking can
be found elsewhere in literature (Halm, et al., 1985; Voigt, 1992; Voigt, 1994; Herman, 1991).

Table 2 presents typical friction values for different base types (ACPA, 2002a and 2002b). It is
clear from the table that CTB, LCB, and CTPB offer the highest degree of restraint. Therefore,
extra precautions need to be taken to ensure that uncontrolled cracking does not happen in the
field when using these base types.

Table 2. Coefficient of friction for different base types (ACPA, 2002a and 2002b).

Subbase Type Coefficient of Friction
Natural subgrade 1.0
Lime-treated clay soil 1.5
Dense-graded granular 1.5
Crushed stone 6.0
Bituminous surface treatment 3.0
Asphalt stabilized (rough) 15.0
Asphalt stabilized (smooth) 6.0
Asphalt-treated, open-graded 15.0
Cement-treated ,open-graded 15.0
Cement-stabilized 10.0
LCB/econocrete 15.0

Beginning with Bradbury (1938) and Kelley (1939), several methods have been advanced over
the years to model the restraint stresses caused by shrinkage and thermal gradients in slabs.
Most of these models have dealt with axial restraint stresses induced in the slab due to slab-base
interface restraint. Zhang and Li (2001) presented a closed-form solution for the calculation of
restraint stresses based on a characterization of the frictional stress using results from push-off
tests.

Rassmussen and Rozycki, (2001) presented a paper that discussed the characterization and
modeling of axial slab-support restraint stress, which is based on a finite difference approach.
This approach was incorporated into the HIPERPAYV program developed by Transtec Inc., under
sponsorship of the FHWA. All the models discussed so far considered only axial restraint.
Recently, Khazanovich and Gotlif (2002) presented a solution for interface friction for full,
partial, and unbonded conditions using just one parameter—bond breaker.

Bond breakers are used to reduce the degree of restraint offered by a given base, along with other

design and construction parameters. The most common bond breakers for CTB and LCB are a
double-coat of wax-based curing membrane or a geotextile fabric (Kohn and Tayabji, 2003). An
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asphalt emulsion coat, used as a curing compound for CTB, can also serve as a bond breaker.
However, according to Grogan et al. (1999), a fresh application of emulsion 8 to 12 hours prior
to paving may be most effective.

There is an on-going debate on what constitutes the best bond-breaking medium for permeable
base layers. Geotextiles and choke stone layers (with gradations similar to AASHTO No. 8 or 9
layers) were mentioned in the literature as being able to break the bond and prevent the paste
intrusion into the open-graded texture of the base (Voigt, 2002). The advantages of the former
are ease of installation, but the disadvantages include (1) restriction of construction traffic from
driving over the base once the fabric is installed and (2) the potential of the cement paste to bind
the pores in the geotextile, thereby destroying the purpose of installing a permeable base layer.
The advantages of the latter include ease of installation and the fact that it is a tried-and-tested
method (the USACE specifications use a choke stone layer to stabilize UPB layers during
construction).

Another way to limit paste intrusion is to not require a high degree of voids in the permeable
base (i.e., reduced permeability requirements). This aspect of the permeable base is receiving
quite a bit of attention at the present time among State and Federal highway agencies. In fact,
the current UFC criteria on permeable bases suggests that a permeability of 1,000 ft/day (305
m/day) is adequate for permeable bases in most situations, which is far less than what is being
used as guidance at the present time.

2.3.3 Impact of Jointing and Jointing Methods

There are several types of joints in rigid airfield pavements—contraction, construction, and
expansion. The subject of this discussion is contraction joints which are primarily provided to
prevent uncontrolled cracking. Contraction joints are typically formed by sawing the concrete
with single-blade, walk-behind saws. For wider paving, span saws may be used to saw
transverse joints more expediently. In the past decade, a new class of saw, termed the early-
entry saw, has become popular. This particular saw allows sawing sooner than conventional
saws (Voigt, 2002).

Joint Spacing

Since the time of Westergaard (1927) and Bradbury (1938), the effect of joint spacing on slab
performance has been well known—the longer the spacing, the higher stress due to curling or
warping. However, since joint spacing is not a direct input into the FAA or other airfield design
procedures, it is determined using empirical guidance and rules-of-thumb. Some of the most
common guidelines include the following:

e Joint spacing should be, at most, 5 times the radius of relative stiffness.

e Joint spacing should be limited to 21 times the PCC slab thickness for stabilized bases or
24 times the PCC slab thickness for granular bases.

e Joint spacing (in feet) should be, at most, 2 times the PCC slab thickness (in inches).
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All these rules imply that the longer dimensions resulting from the calculations should only be
used if sufficient local experience is present to justify them. That joint spacing has an impact on
early-age stresses is clear from the discussion on the impact of slab-base interface friction. The
higher the joint spacing, the higher the degree of movement of the slab edges with respect to the
fixed point in the slab (typically slab center), and therefore, the higher the restraint stresses. This
is borne out by all the theories that deal with slab-base restraint stresses, starting from Bradbury
(1938) and Kelley (1939). The degree of movement is greatly controlled by the coefficient of
thermal expansion of the aggregate and also the prevalent ambient conditions soon after
placement. The problem translates to uncontrolled cracking if the concrete is not strong enough
to resist these early stresses.

In addition to increased axial restraint stresses in PCC slabs, longer joint spacings also cause
increased curling stresses in bending. This is further exacerbated by the presence of stiff
stabilized bases, which cannot accommodate themselves to the curled or warped shape of the
slab (Road Research Laboratory, 1955).

Another aspect of the joint spacing is the slab length to slab width ratio. Several researchers
have suggested that the best practice is to maintain the aspect ratio of the slab (length/width) as
close to 1 as possible and never greater than 1.25, in order to avoid long, narrow slabs which can
crack. This is particularly important when thinner slabs are used. Herman (1991) suggested that
a single plan may not be appropriate for pavements with varying thicknesses, as well as various
paving dimensions.

In June 2002, the FAA made a change to AC 150/5320-6D, recommending the maximum panel
size be 20 ft (6.1 m) for slabs 12 in (305 mm) and thicker placed on stabilized bases. The change

also recommended that joint spacing be a function of the radius of relative stiffness.

Timing of Sawing Joints

In order to derive the anticipated benefit of sawing joints, there is an optimum window of
opportunity to sawcut joints. Figure 2 presents the sawing window of opportunity (after
Okamoto et al., 1991; ACPA, 1994). This window typically occurs a few hours after the
concrete placement, however, the exact timing is variable. The window begins when concrete
strength is acceptable to operate saw equipment without excessive raveling at the joints.

The window ends when the concrete’s volume reduces significantly (from drying shrinkage or
temperature contraction) and restraint of the reduction induces tensile stresses greater than the
tensile strength. If sawing is performed after this point, pop-off cracks (i.e., cracks just ahead of
the sawing operation) can occur (Voigt, 2002).
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Figure 2. Sawing window of opportunity (Okamoto et al., 1991; ACPA, 1994).

The paving contractor is typically provided with guidance that the saws should be operated on
the pavement at the earliest possible time to provide the initial sawcut, without excessively
raveling the slab. Typically, the sawing window is long enough and affords adequate amount of
time for the paving contractors to make a decision as to when to saw. However, the combination
of certain design, materials, and weather-related factors can considerably shorten the window. In
extreme conditions, the window can be so short as to be impracticable for crack control (ACPA,
2002b).

Depth of Sawcut

The depth of sawcut, along with the sawcut timing and the equipment used, has a significant
impact on the performance of the contraction joint. Table 3 provides recommended sawcut
depths for longitudinal and transverse joints (ACPA, 2002a). According to Zollinger et al.
(1994), early-entry sawing methods with sawcut depths less than one-fourth the depth of the slab
thickness provide better crack control than conventional methods with sawcut depths of one-
fourth to one-third the slab thickness.

The issue of sawcutting depth is further aggravated when concrete is placed over open-graded
bases courses and the mortar penetrates the void structure of the base or when the concrete bonds
to the underlying base layer in the absence of a bond breaker. In both these situations, the
effective thickness of the slab is increased and the depth of the initial sawcut may not be
adequate to form a control joint increasing the likelihood of random cracking at an early age.

17



Table 3. Recommended sawcut depths for joints (ACPA, 2002a).

Sawcut Depth as Portion of Slab Thickness

Base Type Transverse Joints Longitudinal Joints
Dense granular subbases (low friction) 1/4 1/3
Stabilized and open-graded subbases (high friction) 1/3 1/3

2.3.4 Impact of Concrete Mixture Properties

Voigt (2002) stated that, regardless of ambient conditions (i.e., temperature swings, rates of
evaporation, hot- and cold-weather paving conditions) at placement, such as subbase restraint,
subbase stiffness, etc., a poor concrete mix design can aggravate the problem of premature
cracking. The main factors that were brought to fore in the literature with regard to this subject
are as follows (Shilstone, 1990; Lafrenz, 1997):

e Mixtures with higher water demand have an increased potential for volumetric shrinkage,
which when combined with other factors (excessive strength, excessive restraint, ambient
conditions, joint spacing, etc.), can lead to uncontrolled cracking. Factors that increase
water demand include higher cement factor concrete (>500 Ib/yd® [>295 kg/m’]) and
concrete made with fine sand.

e Type of coarse aggregate can influence the temperature sensitivity of concrete.

e The gradation of the combined aggregates affects the workability of concrete mixtures
and, therefore, its early-age performance.

Cementitious Material

Mixtures with higher cement factors (quantities of cement and/or pozzolonic and slag additions)
require more mixing water, even if the water-cementitious materials ratio is minimized, and
consequently a higher potential to shrink. Conversely, mixtures with high contents of pozzolans
or ground-granulated blast furnace slag, or lower contents of cement may experience delayed
early-age strength development in cooler weather. Depending on the air, base, and concrete
temperature, this could delay the concrete set time and the ability to saw without excessive
raveling (ACPA, 2002a and 2002b). In the end, the considerations for early-age cracking need to
be balanced with requirements of strength and durability.

Sand

FAA specifications, as implemented on several projects, require that the sand for the PCC meet
the ASTM C 33 specification. ASTM C 33 provides a gradation band for material passing the ¥z
in (9.5-mm) sieve to No. 100 (150 pm) sieve and stipulates the following acceptability
characteristics for the concrete sand gradation:

e No more than 45 percent of material is retained on any one sieve.
e Fineness modulus between 2.3 and 3.1.
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When applied indiscriminately, this specification can lead to a mix design that is susceptible to
uncontrolled cracking due to the possibility of the production of gap-graded mixtures, with
excessive fine sand contents even when criteria noted above are satisfied. The presence of fine
sand (excessive minus No. 50 [300 um] sieve material) increases the bulking potential
dramatically and thereby the potential for volumetric shrinkage and early cracking.

To circumvent this problem, the U.S. Air Force (USAF) developed a concrete guide specification
(and the handbook for concrete mixture proportioning) with the intent to minimize the potential
for early cracking. This specification has discouraged the use of gap-graded aggregates and
minimized the cement and water demand. The provisos of the USAF guide specification
encourage the use of coarse sand and a minimum cement factor. Both of these mix components
directly control the water demand.

In general, concrete with a high cement factor, such as those used in airfield pavement
construction, should include coarse sand. ASTM C 33 allows for a reduction of the portion of
the sand passing the No. 50 and No. 100 (300 um and 150 um) sieves to 5 and 0 percent,
respectively, for:

e Pavement grade concrete.
e Air-entrained concrete with cement content more than about 400 Ib/yd® (236 kg/m’).
e Non-air-entrained concrete with cement content more than about 500 Ib/yd® (295 kg/m”).

If attention is paid to these guidelines, and coarse sand with fineness modulus values in the range
of 3.1 to 3.4 is used in pavement concrete, excellent results can be obtained from a volumetric
shrinkage standpoint. If sand with a well-graded character and fineness modulus values above
3.1 is not available, then manufactured sand may need to be used (ACPA, 2002b).

Combined Aggregates

Examination of the combined aggregate gradation provides insight into the workability and
segregation potential of concrete mixtures. Mixtures prone to segregation are also prone to early
distress. Shilstone (1991) provided a tool to evaluate concrete mixture workability and the risk
of problems such as uncontrolled cracking, which was validated by the USAF. The factors
considered in evaluating a given mixture include the workability factor and the coarseness factor.
The workability factor is simply the percent passing the No. 8 (2.36 mm) sieve for the combined
aggregate gradation. The coarseness factor is expressed as a fraction of the percentage of
aggregate retained on the % in (9.5-mm) sieve to that retained on the No. 8 (2.36 mm) sieve,
multiplied by 100. Using these two factors, a given mixture is evaluated on the basis of the
figure 3.

Generally speaking, ideal concrete with the least risk of premature cracking should be made with
a combined aggregate with a coarseness factor below 75 and a workability factor above 29. A
well-graded combined aggregate will reduce water demand and drying shrinkage potential and
provide better workability and improved early strength development (ACPA, 2002b).
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Figure 3. Workability factor chart.

Coarse Aggregate

The type of coarse aggregate used directly controls the volumetric expansion and contraction of
concrete mixtures. In a study performed by McCullough and Dossey (1999), aggregate type and
placement season were found to be the most significant factors affecting PCC pavement
performance. Generally, limestones, granites, and basalts have lower coefficients of thermal
expansion than quartz, sandstones, and siliceous gravel (Kosmatka et al., 2002). This means that
concrete made with the former materials more insensitive to ambient conditions and will perhaps
exhibit lower tendencies to crack at early ages.

2.3.5 Impact of Weather Conditions During Construction

Perhaps the most commonly cited factor affecting premature cracking is weather. Air
temperature, wind speed, relative humidity, precipitation, and solar radiation all have an impact
on the early-age performance of concrete since they either heat or cool and dry or wet-up the
concrete (ACPA, 2002b). They also influence the temperature of the base layer, which in turn
influences the heat flow into and out of the concrete layer during hydration. The main weather-
related factors that affect early-age concrete performance are as follows:

Paving temperatures (hot or cold).
Large temperature swings.
Precipitation.

High rates of evaporation.

These parameters when combined with other design, materials, and construction factors, affect
the slab movements due to curl and warp, sawing window, and strength development.
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2.4 SUMMARY AND CONCLUSIONS

There is adequate empirical evidence available to prove that the phenomenon of premature
cracking is real. Several factors including the pavement base affect the early-age performance of
concrete. Some safeguards can be built into pavement design and construction to prevent
uncontrolled cracking by addressing issues of base thickness and strength. However, an
approach to resolving the premature cracking problems involves much more than specifying a
base thickness and strength.
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CHAPTER 3. AIRPORT PROJECT REVIEWS

3.1 PRELIMINARY IDENTIFICATION OF PROJECTS

To identify specific airport projects for detailed investigation, an extensive search was made for
civilian (commercial and general aviation [GA]) and military airports in the U.S. containing PCC
pavements built on stabilized and/or permeable bases. The initial search relied heavily upon the
following data sources:

Design and construction records.

FAA regional offices.

U.S. Army Corps of Engineers (Center of Expertise and District offices).

American Concrete Pavement Association (ACPA) and concrete paving contractors.
Airport Consultants Council (ACC) and airport consulting firms.

Air Force Civil Engineering Support Agency (AFCESA) and Air Force Major Command
offices.

During this search, basic design and construction information was collected for each project to
aid in short-listing the projects for detailed evaluation. The specific data items obtained as part
of this undertaking included the following:

Data source.

Project and/or section identification name/number.
Airport/airfield name.

Airfield usage type.

Airfield location (city and state).

Facility usage type (i.e., apron, runway, taxiway).

Type of base course.

Year of construction.

PCC design (pavement type, slab thickness, slab dimensions).
Subgrade type.

Presence of early-age distress (EAD).

Other information (annotation of unique cross-section details, soil stabilization, etc.).

Of the 200-plus airfields examined, 119 were found to have pavements with cement-treated,
asphalt-treated, econocrete, or permeable base layers. These airfields were spread across 38
states and represented diverse climatic zones, as seen in figure 4. Nearly 900 pavement projects
or sections were identified that provided all the base types and facility types of interest in the
study, as well as a variety of design, construction, and site factors. Additionally, the projects/
sections included a mix of pavements identified as having
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Figure 4. Geographical distribution of airfields with PCC pavement built on stabilized
and/or permeable base.

experienced (a) no or negligible amounts of EAD in the form of premature cracking or (b) EAD
constituting a serious design and/or construction problem. It should be noted that, because of the
difficulty in obtaining subgrade soil type information for a majority of the sections, this data
variable was removed from consideration in the study.

3.2 SHORT-LISTING OF PROJECTS FOR DETAILED INVESTIGATION

A systematic set of rules was followed to identify a shortlist of projects from the large pool of
candidate pavements. These rules were established in close alignment with the general and
specific project objectives presented in chapter 1, as well as the following related objectives:

e How does the pavement base design relate to other design parameters (e.g., slab
thickness, joint spacing)?

e What are key materials and construction considerations for the different base types?

e Do stabilized and/or permeable bases have an influence on the impact of extreme thermal
changes during PCC construction?
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Project selection followed a two-step process. The first step involved grouping the potential
projects on the basis of the data gathered from literature and the airport reviews. The groupings
were made in accordance with the following categorical variables:

Performance—2 levels.

> Presence of EAD.

> Absence of EAD.

Climate—3 categories.

> Wet-freeze (WF).

> Wet-nonfreeze (WNF).

> Dry-freeze and dry-nonfreeze (DF and DNF).
Base type—o6 categories.

CTB (P-304).

Econocrete/Lean Concrete (P-3006).
ATB (P-401).

UPB.

CTPB.

ATPB.

YV V. V V V V

Table 4 shows the analysis template created to aid in grouping the potential projects, based on
the categorical variables.

In the second step of the selection process, projects were selected for detailed investigation
according to the following criteria:

Within the budgetary and time constraints of the study, select a reasonable number of

EAD projects, such that at least two sections per base type are selected for further review.

Group the selected EAD projects by the primary variable of interest—base type. From

the available design and construction data for each project, establish the ranges of the key

variables for each base type (e.g., cross-section details, material parameters, construction

parameters, and QA/QC plans).

For each group of EAD projects (sorted by base type), select two or more companion

projects that did not exhibit EAD, ensuring that they satisfy the following criteria:

> Companion projects should envelope the key variables of interest to each base type
under consideration. For base types with no representative EAD projects, select
companion projects that feature proven best practices.

> Companion projects should have been constructed within the last 7 years, where
possible, and have performed well in terms of early-age behavior.

» The airfields in which the companion projects are located should have a long history
of positive experience with the base types under consideration.

> Adequate detailed records are available for analysis for both EAD and companion
projects.
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Table 4. Analysis template used in identifying and selecting airport projects.

Base Type Early-Age Wet-Ereeze Wet-Nonfreeze Dry-Freeze and Dry-
Distress? Nonfreeze

CTB (P-304) Yes
No

Econocrete/ Yes
LCB (P-306) No
ATB (P-401) Yes
No

UPB Yes

No

CTPB Yes
No

ATPB Yes
No

Note: The definitions of “wet” and “freeze” climatic conditions were based on the Federal Highway Administration’s
(FHWA’s) Long-Term Pavement Performance criteria. According to these criteria, a wet climate is defined as one
receiving greater than 20 in (500 mm) of mean annual precipitation and freezing climate is defined as one where the
cumulative annual freezing index is greater than 150°F-days (83°C-day).

The overall project selection methodology was specifically formulated to enable a detailed
comparison between the EAD and the companion projects, thereby providing insight into the
causes of EAD and to aid in the development of design and construction recommendations for
preventing it from occurring.

3.2.1 Grouping of Projects (Step 1)

The project short-listing procedure was applied to the database of airfield pavement sections
assembled in the preliminary project identification task. The first step of the exercise clearly
illustrated that substantially fewer sections with reported EAD issues were available for detailed
investigation, as compared to those with no EAD. Furthermore, none of the UPB and ATPB
sections identified and only one of the ATB sections identified had experienced premature
cracking.

Table 5 shows the number of EAD and companion (no EAD) projects identified for the analysis
matrix presented earlier in table 4. Figure 5 shows the locations of the various projects identified
as having early-age cracking problems. The number of EAD projects indicated in this figure
provided sufficient impetus to investigate the reasons for EAD and to develop appropriate
guidance that identifies the causes.
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Table 5. Analysis template following completion of step 1 of project shortlisting.

Base Type Early-Age Wet-Ereeze Wet-Nonfreeze Dry-Freeze and Dry-
Distress? Nonfreeze
CTB (P-304) Yes 7 1 1
No 77 229 98
LCB (P-306) Yes 2 2 1
No 75 86 2
ATB (P-401) Yes ! 0 0
No 96 52 8
UPB Yes 0 0 0
No 4 1 16
CTPB Yes 3 0 0
No 9 0 1
ATPB Yes 4 0 0
No 86 6 5

Baton'Rduge
Metropolitan

Figure 5. Locations of projects with EAD.

26



3.2.2 Project Selection (Step 2)

Table 6 lists all the projects with EAD and the reasons cited for their occurrence. It also shows
the nine EAD projects that were selected for detailed investigation and lists the reasons for
selecting or not selecting the projects.

Table 7 summarizes, by base type, the EAD and companion projects selected for evaluation.
Generally speaking, projects that were chosen were done so because of their overall suit